Cargando…
Combined Molnupiravir and Nirmatrelvir Treatment Improves the Inhibitory Effect on SARS-CoV-2 in Rhesus Macaques
The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580379/ https://www.ncbi.nlm.nih.gov/pubmed/36263071 http://dx.doi.org/10.1101/2022.09.03.506479 |
Sumario: | The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have each recently been approved as monotherapy for use in high risk COVID-19 patients. As preclinical data are only available for rodent and ferret models, we originally assessed the efficacy of MK-4482 and PF-07321332 alone and then in combination Against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs. Combined treatment resulted in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated here in the closest COVID-19 surrogate model. |
---|