Cargando…
A machine learning approach utilizing DNA methylation as an accurate classifier of COVID-19 disease severity
Since the onset of the COVID-19 pandemic, increasing cases with variable outcomes continue globally because of variants and despite vaccines and therapies. There is a need to identify at-risk individuals early that would benefit from timely medical interventions. DNA methylation provides an opportun...
Autores principales: | Bowler, Scott, Papoutsoglou, Georgios, Karanikas, Aristides, Tsamardinos, Ioannis, Corley, Michael J., Ndhlovu, Lishomwa C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580434/ https://www.ncbi.nlm.nih.gov/pubmed/36261477 http://dx.doi.org/10.1038/s41598-022-22201-4 |
Ejemplares similares
-
Learning Pathway Dynamics from Single‐Cell Proteomic Data: A Comparative Study
por: Verrou, Kleio‐Maria, et al.
Publicado: (2020) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Papoutsoglou, Georgios, et al.
Publicado: (2021) -
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Whole-blood methylation signatures are associated with and accurately classify multiple sclerosis disease severity
por: Campagna, Maria Pia, et al.
Publicado: (2022) -
Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization
por: Papoutsoglou, Georgios, et al.
Publicado: (2019)