Cargando…
Machine Learning-Based HIV Risk Estimation Using Incidence Rate Ratios
HIV/AIDS is an ongoing global pandemic, with an estimated 39 million infected worldwide. Early detection is anticipated to help improve outcomes and prevent further infections. Point-of-care diagnostics make HIV/AIDS diagnoses available both earlier and to a broader population. Wide-spread and autom...
Autores principales: | Haas, Oliver, Maier, Andreas, Rothgang, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580760/ https://www.ncbi.nlm.nih.gov/pubmed/36304038 http://dx.doi.org/10.3389/frph.2021.756405 |
Ejemplares similares
-
The role of machine learning in HIV risk prediction
por: Fieggen, Joshua, et al.
Publicado: (2022) -
Rule-Based Models for Risk Estimation and Analysis of In-hospital Mortality in Emergency and Critical Care
por: Haas, Oliver, et al.
Publicado: (2021) -
Incidence of unintended pregnancy and associated factors among adolescent girls and young women at risk of HIV infection in Kampala, Uganda
por: Namukisa, Mary, et al.
Publicado: (2023) -
Depression and HIV risks: Engaging older African American women in HIV prevention education through the church
por: Ebor, Megan T., et al.
Publicado: (2023) -
Perceived Facilitators and Barriers to Participating in a Combination Income-Generating HIV Risk-Reduction Intervention Among Adolescent Girls and Young Women in Nigeria: A Qualitative Study
por: Nwaozuru, Ucheoma, et al.
Publicado: (2021)