Cargando…

genomeSidekick: A user-friendly epigenomics data analysis tool

Recent advances in epigenomics measurements have resulted in a preponderance of genomic sequencing datasets that require focused analyses to discover mechanisms governing biological processes. In addition, multiple epigenomics experiments are typically performed within the same study, thereby increa...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Junjie, Zhu, Ashley J., Packard, René R. S., Vondriska, Thomas M., Chapski, Douglas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580848/
https://www.ncbi.nlm.nih.gov/pubmed/36304311
http://dx.doi.org/10.3389/fbinf.2022.831025
Descripción
Sumario:Recent advances in epigenomics measurements have resulted in a preponderance of genomic sequencing datasets that require focused analyses to discover mechanisms governing biological processes. In addition, multiple epigenomics experiments are typically performed within the same study, thereby increasing the complexity and difficulty of making meaningful inferences from large datasets. One gap in the sequencing data analysis pipeline is the availability of tools to efficiently browse genomic data for scientists that do not have bioinformatics training. To bridge this gap, we developed genomeSidekick, a graphical user interface written in R that allows researchers to perform bespoke analyses on their transcriptomic and chromatin accessibility or chromatin immunoprecipitation data without the need for command line tools. Importantly, genomeSidekick outputs lists of up- and downregulated genes or chromatin features with differential accessibility or occupancy; visualizes omics data using interactive volcano plots; performs Gene Ontology analyses locally; and queries PubMed for selected gene candidates for further evaluation. Outputs can be saved using the user interface and the code underlying genomeSidekick can be edited for custom analyses. In summary, genomeSidekick brings wet lab scientists and bioinformaticians into a shared fluency with the end goal of driving mechanistic discovery.