Cargando…
A Machine Learning Framework Predicts the Clinical Severity of Hemophilia B Caused by Point-Mutations
Blood coagulation is a vital physiological mechanism to stop blood loss following an injury to a blood vessel. This process starts immediately upon damage to the endothelium lining a blood vessel, and results in the formation of a platelet plug that closes the site of injury. In this repair operatio...
Autores principales: | Lopes, Tiago J. S., Nogueira, Tatiane, Rios, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580853/ https://www.ncbi.nlm.nih.gov/pubmed/36304295 http://dx.doi.org/10.3389/fbinf.2022.912112 |
Ejemplares similares
-
A graph-based machine learning framework identifies critical properties of FVIII that lead to hemophilia A
por: Ferreira, Marcos V., et al.
Publicado: (2023) -
Prediction of hemophilia A severity using a small-input machine-learning framework
por: Lopes, Tiago J. S., et al.
Publicado: (2021) -
Computational Analyses Reveal Fundamental Properties of the Hemophilia Literature in the Last 6 Decades
por: Lopes, Tiago JS, et al.
Publicado: (2022) -
Automated Machine-Learning Framework Integrating Histopathological and Radiological Information for Predicting IDH1 Mutation Status in Glioma
por: Wang, Dingqian, et al.
Publicado: (2021) -
A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
por: Rozenwald, Michal B., et al.
Publicado: (2020)