Cargando…
Prediction of Adverse Drug Reaction Linked to Protein Targets Using Network-Based Information and Machine Learning
Drug discovery attrition rates, particularly at advanced clinical trial stages, are high because of unexpected adverse drug reactions (ADR) elicited by novel drug candidates. Predicting undesirable ADRs produced by the modulation of certain protein targets would contribute to developing safer drugs,...
Autores principales: | Galletti, Cristiano, Aguirre-Plans, Joaquim, Oliva, Baldo, Fernandez-Fuentes, Narcis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580901/ https://www.ncbi.nlm.nih.gov/pubmed/36304303 http://dx.doi.org/10.3389/fbinf.2022.906644 |
Ejemplares similares
-
Mining drug–target and drug–adverse drug reaction databases to identify target–adverse drug reaction relationships
por: Galletti, Cristiano, et al.
Publicado: (2021) -
An ensemble learning approach for modeling the systems biology of drug-induced injury
por: Aguirre-Plans, Joaquim, et al.
Publicado: (2021) -
In-silico simulated prototype-patients using TPMS technology to study a potential adverse effect of sacubitril and valsartan
por: Jorba, Guillem, et al.
Publicado: (2020) -
On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures
por: Marín-López, Manuel Alejandro, et al.
Publicado: (2018) -
An analytical study on the identification of N-linked glycosylation sites using machine learning model
por: Akmal, Muhammad Aizaz, et al.
Publicado: (2022)