Cargando…
Computational Literature-based Discovery for Natural Products Research: Current State and Future Prospects
Literature-based discovery (LBD) mines existing literature in order to generate new hypotheses by finding links between previously disconnected pieces of knowledge. Although automated LBD systems are becoming widespread and indispensable in a wide variety of knowledge domains, little has been done t...
Autores principales: | Lardos, Andreas, Aghaebrahimian, Ahmad, Koroleva, Anna, Sidorova, Julia, Wolfram, Evelyn, Anisimova, Maria, Gil, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580913/ https://www.ncbi.nlm.nih.gov/pubmed/36304281 http://dx.doi.org/10.3389/fbinf.2022.827207 |
Ejemplares similares
-
TRAL 2.0: Tandem Repeat Detection With Circular Profile Hidden Markov Models and Evolutionary Aligner
por: Delucchi, Matteo, et al.
Publicado: (2021) -
Beyond Microsatellite Instability: Intrinsic Disorder as a Potential Link Between Protein Short Tandem Repeats and Cancer
por: Verbiest, Max A., et al.
Publicado: (2021) -
Blockchain for genomics and healthcare: a literature review, current status, classification and open issues
por: Adanur Dedeturk, Beyhan, et al.
Publicado: (2021) -
Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology
por: Ramakrishna, Ramanaesh Rao, et al.
Publicado: (2020) -
Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M(pro) inhibitor
por: Kakhar Umar, Abd., et al.
Publicado: (2023)