Cargando…
A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction
Machine learning has shown utility in detecting patterns within large, unstructured, and complex datasets. One of the promising applications of machine learning is in precision medicine, where disease risk is predicted using patient genetic data. However, creating an accurate prediction model based...
Autores principales: | Pudjihartono, Nicholas, Fadason, Tayaza, Kempa-Liehr, Andreas W., O'Sullivan, Justin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580915/ https://www.ncbi.nlm.nih.gov/pubmed/36304293 http://dx.doi.org/10.3389/fbinf.2022.927312 |
Ejemplares similares
-
De novo identification of complex traits associated with asthma
por: Zaied, Roan E., et al.
Publicado: (2023) -
Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities
por: Fadason, Tayaza, et al.
Publicado: (2018) -
Unravelling the Shared Genetic Mechanisms Underlying 18 Autoimmune Diseases Using a Systems Approach
por: Gokuladhas, Sreemol, et al.
Publicado: (2021) -
Machine Learning Identifies Six Genetic Variants and Alterations in the Heart Atrial Appendage as Key Contributors to PD Risk Predictivity
por: Ho, Daniel, et al.
Publicado: (2022) -
A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
por: Rozenwald, Michal B., et al.
Publicado: (2020)