Cargando…

Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale

The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Bin, Canon, Shane, Eloe-Fadrosh, Emiley A., Anubhav, Babinski, Michal, Corilo, Yuri, Davenport, Karen, Duncan, William D., Fagnan, Kjiersten, Flynn, Mark, Foster, Brian, Hays, David, Huntemann, Marcel, Jackson, Elais K. Player, Kelliher, Julia, Li, Po-E., Lo, Chien-Chi, Mans, Douglas, McCue, Lee Ann, Mouncey, Nigel, Mungall, Christopher J., Piehowski, Paul D., Purvine, Samuel O., Smith, Montana, Varghese, Neha Jacob, Winston, Donald, Xu, Yan, Chain, Patrick S. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580927/
https://www.ncbi.nlm.nih.gov/pubmed/36303775
http://dx.doi.org/10.3389/fbinf.2021.826370
_version_ 1784812502447554560
author Hu, Bin
Canon, Shane
Eloe-Fadrosh, Emiley A.
Anubhav,
Babinski, Michal
Corilo, Yuri
Davenport, Karen
Duncan, William D.
Fagnan, Kjiersten
Flynn, Mark
Foster, Brian
Hays, David
Huntemann, Marcel
Jackson, Elais K. Player
Kelliher, Julia
Li, Po-E.
Lo, Chien-Chi
Mans, Douglas
McCue, Lee Ann
Mouncey, Nigel
Mungall, Christopher J.
Piehowski, Paul D.
Purvine, Samuel O.
Smith, Montana
Varghese, Neha Jacob
Winston, Donald
Xu, Yan
Chain, Patrick S. G.
author_facet Hu, Bin
Canon, Shane
Eloe-Fadrosh, Emiley A.
Anubhav,
Babinski, Michal
Corilo, Yuri
Davenport, Karen
Duncan, William D.
Fagnan, Kjiersten
Flynn, Mark
Foster, Brian
Hays, David
Huntemann, Marcel
Jackson, Elais K. Player
Kelliher, Julia
Li, Po-E.
Lo, Chien-Chi
Mans, Douglas
McCue, Lee Ann
Mouncey, Nigel
Mungall, Christopher J.
Piehowski, Paul D.
Purvine, Samuel O.
Smith, Montana
Varghese, Neha Jacob
Winston, Donald
Xu, Yan
Chain, Patrick S. G.
author_sort Hu, Bin
collection PubMed
description The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for very specific purposes on samples collected by individual investigators or groups. While these developments have been quite instructive, the ability to compare microbiome data generated by many groups of researchers is impeded by the lack of standardized application of bioinformatics methods. Additionally, there are few examples of broad bioinformatics workflows that can process metagenome, metatranscriptome, metaproteome and metabolomic data at scale, and no central hub that allows processing, or provides varied omics data that are findable, accessible, interoperable and reusable (FAIR). Here, we review some of the challenges that exist in analyzing omics data within the microbiome research sphere, and provide context on how the National Microbiome Data Collaborative has adopted a standardized and open access approach to address such challenges.
format Online
Article
Text
id pubmed-9580927
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95809272022-10-26 Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale Hu, Bin Canon, Shane Eloe-Fadrosh, Emiley A. Anubhav, Babinski, Michal Corilo, Yuri Davenport, Karen Duncan, William D. Fagnan, Kjiersten Flynn, Mark Foster, Brian Hays, David Huntemann, Marcel Jackson, Elais K. Player Kelliher, Julia Li, Po-E. Lo, Chien-Chi Mans, Douglas McCue, Lee Ann Mouncey, Nigel Mungall, Christopher J. Piehowski, Paul D. Purvine, Samuel O. Smith, Montana Varghese, Neha Jacob Winston, Donald Xu, Yan Chain, Patrick S. G. Front Bioinform Bioinformatics The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for very specific purposes on samples collected by individual investigators or groups. While these developments have been quite instructive, the ability to compare microbiome data generated by many groups of researchers is impeded by the lack of standardized application of bioinformatics methods. Additionally, there are few examples of broad bioinformatics workflows that can process metagenome, metatranscriptome, metaproteome and metabolomic data at scale, and no central hub that allows processing, or provides varied omics data that are findable, accessible, interoperable and reusable (FAIR). Here, we review some of the challenges that exist in analyzing omics data within the microbiome research sphere, and provide context on how the National Microbiome Data Collaborative has adopted a standardized and open access approach to address such challenges. Frontiers Media S.A. 2022-01-17 /pmc/articles/PMC9580927/ /pubmed/36303775 http://dx.doi.org/10.3389/fbinf.2021.826370 Text en Copyright © 2022 Hu, Canon, Eloe-Fadrosh, Anubhav, Babinski, Corilo, Davenport, Duncan, Fagnan, Flynn, Foster, Hays, Huntemann, Jackson, Kelliher, Li, Lo, Mans, McCue, Mouncey, Mungall, Piehowski, Purvine, Smith, Varghese, Winston, Xu and Chain. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioinformatics
Hu, Bin
Canon, Shane
Eloe-Fadrosh, Emiley A.
Anubhav,
Babinski, Michal
Corilo, Yuri
Davenport, Karen
Duncan, William D.
Fagnan, Kjiersten
Flynn, Mark
Foster, Brian
Hays, David
Huntemann, Marcel
Jackson, Elais K. Player
Kelliher, Julia
Li, Po-E.
Lo, Chien-Chi
Mans, Douglas
McCue, Lee Ann
Mouncey, Nigel
Mungall, Christopher J.
Piehowski, Paul D.
Purvine, Samuel O.
Smith, Montana
Varghese, Neha Jacob
Winston, Donald
Xu, Yan
Chain, Patrick S. G.
Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title_full Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title_fullStr Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title_full_unstemmed Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title_short Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale
title_sort challenges in bioinformatics workflows for processing microbiome omics data at scale
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580927/
https://www.ncbi.nlm.nih.gov/pubmed/36303775
http://dx.doi.org/10.3389/fbinf.2021.826370
work_keys_str_mv AT hubin challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT canonshane challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT eloefadroshemileya challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT anubhav challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT babinskimichal challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT coriloyuri challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT davenportkaren challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT duncanwilliamd challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT fagnankjiersten challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT flynnmark challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT fosterbrian challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT haysdavid challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT huntemannmarcel challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT jacksonelaiskplayer challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT kelliherjulia challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT lipoe challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT lochienchi challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT mansdouglas challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT mccueleeann challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT mounceynigel challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT mungallchristopherj challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT piehowskipauld challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT purvinesamuelo challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT smithmontana challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT varghesenehajacob challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT winstondonald challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT xuyan challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale
AT chainpatricksg challengesinbioinformaticsworkflowsforprocessingmicrobiomeomicsdataatscale