Cargando…
Caveats to Deep Learning Approaches to RNA Secondary Structure Prediction
Machine learning (ML) and in particular deep learning techniques have gained popularity for predicting structures from biopolymer sequences. An interesting case is the prediction of RNA secondary structures, where well established biophysics based methods exist. The accuracy of these classical metho...
Autores principales: | Flamm , Christoph, Wielach, Julia, Wolfinger, Michael T., Badelt, Stefan, Lorenz, Ronny, Hofacker, Ivo L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580944/ https://www.ncbi.nlm.nih.gov/pubmed/36304289 http://dx.doi.org/10.3389/fbinf.2022.835422 |
Ejemplares similares
-
DrTransformer: heuristic cotranscriptional RNA folding using the nearest neighbor energy model
por: Badelt, Stefan, et al.
Publicado: (2023) -
Sequence-controlled RNA self-processing: computational design, biochemical analysis, and visualization by AFM
por: Petkovic, Sonja, et al.
Publicado: (2015) -
SHAPE directed RNA folding
por: Lorenz, Ronny, et al.
Publicado: (2016) -
Mono-valent salt corrections for RNA secondary structures in the ViennaRNA package
por: Yao, Hua-Ting, et al.
Publicado: (2023) -
TSSAR: TSS annotation regime for dRNA-seq data
por: Amman, Fabian, et al.
Publicado: (2014)