Cargando…
Protein structure prediction in the era of AI: Challenges and limitations when applying to in silico force spectroscopy
Mechanoactive proteins are essential for a myriad of physiological and pathological processes. Guided by the advances in single-molecule force spectroscopy (SMFS), we have reached a molecular-level understanding of how mechanoactive proteins sense and respond to mechanical forces. However, even SMFS...
Autores principales: | Gomes, Priscila S. F. C., Gomes, Diego E. B., Bernardi, Rafael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580946/ https://www.ncbi.nlm.nih.gov/pubmed/36304287 http://dx.doi.org/10.3389/fbinf.2022.983306 |
Ejemplares similares
-
In silico approach to identify microsatellite candidate biomarkers to differentiate the biovar of Corynebacterium pseudotuberculosis genomes
por: Pinheiro, Kenny da Costa, et al.
Publicado: (2022) -
Multimodal AI for prediction of distant metastasis in carcinoma patients
por: Olatunji, Isaac, et al.
Publicado: (2023) -
Challenging a bioinformatic tool’s ability to detect microbial contaminants using in silico whole genome sequencing data
por: Olson, Nathan D., et al.
Publicado: (2017) -
In-silico study of antisense oligonucleotide antibiotics
por: Chen, Erica S., et al.
Publicado: (2023) -
Translating theory into practice: assessing the privacy implications of concept-based explanations for biomedical AI
por: Lucieri, Adriano, et al.
Publicado: (2023)