Cargando…
Sparse bayesian learning for genomic selection in yeast
Genomic selection, which predicts phenotypes such as yield and drought resistance in crops from high-density markers positioned throughout the genome of the varieties, is moving towards machine learning techniques to make predictions on complex traits that are controlled by several genes. In this pa...
Autores principales: | Ayat, Maryam, Domaratzki, Mike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580947/ https://www.ncbi.nlm.nih.gov/pubmed/36304259 http://dx.doi.org/10.3389/fbinf.2022.960889 |
Ejemplares similares
-
A Sparse-Modeling Based Approach for Class Specific Feature Selection
por: Nardone, Davide, et al.
Publicado: (2019) -
A combined test for feature selection on sparse metaproteomics data—an alternative to missing value imputation
por: Plancade, Sandra, et al.
Publicado: (2022) -
Distributed Bayesian networks reconstruction on the whole genome scale
por: Frolova, Alina, et al.
Publicado: (2018) -
Crop genomic selection with deep learning and environmental data: A survey
por: Jubair, Sheikh, et al.
Publicado: (2023) -
OBAMA: OBAMA for Bayesian amino-acid model averaging
por: Bouckaert, Remco R.
Publicado: (2020)