Cargando…
Development of a Machine Learning Classifier for Brain Tumors Diagnosis Based on DNA Methylation Profile
Background: More than 150 types of brain tumors have been documented. Accurate diagnosis is important for making appropriate therapeutic decisions in treating the diseases. The goal of this study is to develop a DNA methylation profile-based classifier to accurately identify various kinds of brain t...
Autores principales: | Chen, Yuxing, Yan, Yixin, Xu, Moping, Chen, Wen, Lin, Jinyu, Zhao, Yan, Wu, Junze, Wang, Xianlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581020/ https://www.ncbi.nlm.nih.gov/pubmed/36303797 http://dx.doi.org/10.3389/fbinf.2021.744345 |
Ejemplares similares
-
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers
por: Yu, Xin, et al.
Publicado: (2021) -
Prioritizing bona fide bacterial small RNAs with machine learning classifiers
por: Eppenhof, Erik J.J., et al.
Publicado: (2019) -
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020) -
Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers?
por: Johnson, Nathan T., et al.
Publicado: (2018)