Cargando…
Large-Scale Protein Interactions Prediction by Multiple Evidence Analysis Associated With an In-Silico Curation Strategy
Predicting the physical or functional associations through protein-protein interactions (PPIs) represents an integral approach for inferring novel protein functions and discovering new drug targets during repositioning analysis. Recent advances in high-throughput data generation and multi-omics tech...
Autores principales: | Martins, Yasmmin Côrtes, Ziviani, Artur, Nicolás, Marisa Fabiana, de Vasconcelos, Ana Tereza Ribeiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581021/ https://www.ncbi.nlm.nih.gov/pubmed/36303787 http://dx.doi.org/10.3389/fbinf.2021.731345 |
Ejemplares similares
-
EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes
por: Ferreira, Cristina S., et al.
Publicado: (2021) -
Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion
por: Terra Machado, Douglas, et al.
Publicado: (2023) -
PPIntegrator: semantic integrative system for protein–protein interaction and application for host–pathogen datasets
por: Martins, Yasmmin Côrtes, et al.
Publicado: (2023) -
Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation
por: Pratama, Akbar Adjie, et al.
Publicado: (2021) -
In silico predictions of protein interactions between Zika virus and human host
por: Pitta, João Luiz de Lemos Padilha, et al.
Publicado: (2021)