Cargando…
Singularity Containers Improve Reproducibility and Ease of Use in Computational Image Analysis Workflows
Reproducing computational workflows in image analysis and microscopy can be a daunting task due to different software versions and dependencies. This is especially true for users with little specific knowledge of scientific computation. To overcome these challenges, we introduce Singularity containe...
Autores principales: | Mitra-Behura, Shilpita, Fiolka, Reto Paul, Daetwyler, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581025/ https://www.ncbi.nlm.nih.gov/pubmed/36303730 http://dx.doi.org/10.3389/fbinf.2021.757291 |
Ejemplares similares
-
U-Hack Med Gap Year—A Virtual Undergraduate Internship Program in Computer-Assisted Healthcare and Biomedical Research
por: Daetwyler, Stephan, et al.
Publicado: (2021) -
Light-sheets and smart microscopy, an exciting future is dawning
por: Daetwyler, Stephan, et al.
Publicado: (2023) -
Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
por: Turewicz, Michael, et al.
Publicado: (2013) -
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers
por: Sochat, Vanessa V., et al.
Publicado: (2017) -
Building Reproducible Science with Singularity Containers
por: Bauer, Michael
Publicado: (2018)