Cargando…
Automated Machine-Learning Framework Integrating Histopathological and Radiological Information for Predicting IDH1 Mutation Status in Glioma
Diffuse gliomas are the most common malignant primary brain tumors. Identification of isocitrate dehydrogenase 1 (IDH1) mutations aids the diagnostic classification of these tumors and the prediction of their clinical outcomes. While histology continues to play a key role in frozen section diagnosis...
Autores principales: | Wang, Dingqian, Liu, Cuicui, Wang, Xiuying, Liu, Xuejun, Lan, Chuanjin, Zhao, Peng, Cho, William C., Graeber, Manuel B., Liu, Yingchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581043/ https://www.ncbi.nlm.nih.gov/pubmed/36303770 http://dx.doi.org/10.3389/fbinf.2021.718697 |
Ejemplares similares
-
Machine Learning Models for Multiparametric Glioma Grading With Quantitative Result Interpretations
por: Wang, Xiuying, et al.
Publicado: (2019) -
Machine-learning-based automated quantification machine for virus plaque assay counting
por: Phanomchoeng, Gridsada, et al.
Publicado: (2022) -
Modeling a deep transfer learning framework for the classification of COVID-19 radiology dataset
por: Fayemiwo, Michael Adebisi, et al.
Publicado: (2021) -
Abnormal expression of HOXD11 promotes the malignant behavior of glioma cells and leads to poor prognosis of glioma patients
por: Wang, Jialin, et al.
Publicado: (2021) -
CNV-P: a machine-learning framework for predicting high confident copy number variations
por: Wang, Taifu, et al.
Publicado: (2021)