Cargando…
A guidance of model selection for genomic prediction based on linear mixed models for complex traits
Brain imaging outcomes are important for Alzheimer’s disease (AD) detection, and their prediction based on both genetic and demographic risk factors can facilitate the ongoing prevention and treatment of AD. Existing studies have identified numerous significantly AD-associated SNPs. However, how to...
Autores principales: | Duan, Jiefang, Zhang, Jiayu, Liu, Long, Wen, Yalu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581223/ https://www.ncbi.nlm.nih.gov/pubmed/36276959 http://dx.doi.org/10.3389/fgene.2022.1017380 |
Ejemplares similares
-
Bayesian linear mixed model with multiple random effects for family-based genetic studies
por: Hai, Yang, et al.
Publicado: (2023) -
Prediction of Complex Traits: Robust Alternatives to Best Linear Unbiased Prediction
por: Gianola, Daniel, et al.
Publicado: (2018) -
Risk prediction models for oral clefts allowing for phenotypic heterogeneity
por: Wen, Yalu, et al.
Publicado: (2015) -
Genomic Prediction of Two Complex Orthopedic Traits Across Multiple Pure and Mixed Breed Dogs
por: Jiang, Liping, et al.
Publicado: (2021) -
Combining Sparse Group Lasso and Linear Mixed Model Improves Power to Detect Genetic Variants Underlying Quantitative Traits
por: Guo, Yingjie, et al.
Publicado: (2019)