Cargando…
Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis
BACKGROUND: Although some previous studies have indicated that extracellular vesicles (EVs) secreted from miRNA-modified mesenchymal stem cells (MSCs) may be more effective as compared with control EVs in the treatment of rats with spinal cord injuries (SCI), the efficacy of this treatment modality...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581233/ https://www.ncbi.nlm.nih.gov/pubmed/36278023 http://dx.doi.org/10.3389/fnins.2022.989295 |
_version_ | 1784812574919884800 |
---|---|
author | Yang, Zhelun Rao, Jian Liang, Zeyan Xu, Xiongjie Lin, Fabin Lin, Yike Wang, Chunhua Chen, Chunmei |
author_facet | Yang, Zhelun Rao, Jian Liang, Zeyan Xu, Xiongjie Lin, Fabin Lin, Yike Wang, Chunhua Chen, Chunmei |
author_sort | Yang, Zhelun |
collection | PubMed |
description | BACKGROUND: Although some previous studies have indicated that extracellular vesicles (EVs) secreted from miRNA-modified mesenchymal stem cells (MSCs) may be more effective as compared with control EVs in the treatment of rats with spinal cord injuries (SCI), the efficacy of this treatment modality remains controversial. OBJECTIVES: The current study comprehensively evaluated the efficacy of different administered doses of EVs, including miRNA-overexpressing MSCs-derived EVs, among SCI rats. The efficacy of EVs' treatment was evaluated in different SCI models to provide evidence for preclinical trials. METHODS: We extensively searched the following databases to identify relevant studies: PubMed, Embase, Scopus, The Cochrane Library, and Web of Science (from inception to July 20, 2022). Two trained investigators independently screened literature, extracted the data, and evaluated literature quality. RESULTS: Thirteen studies were included in this network meta-analysis. The results demonstrated that miRNA-overexpressing MSCs-derived EVs (100 and 200 μg of total protein of EVs) significantly improved hind limb motor function in rats at early stages of SCI (i.e., at 3 days after injury) as compared with EVs (100 and 200 μg of total protein of EVs, respectively). However, in the middle and late stages (14 and 28 days), there were no statistically significant differences between EVs with 200 μg dosages and miRNA-loaded EVs with 100 μg dosages. In the late stages (28 days), there were no statistically significant differences between EVs with 100 μg dosages and miRNA-loaded EVs with 200 μg dosages. We found that miRNA-overexpressing MSCs-derived EVs significantly improved motor function among early-stage SCI rats in a compression and contusion model (3 days) as compared with MSCs-derived EVs and miRNA-overexpressing MSCs-derived EVs likewise significantly improved motor function among SCI rats in a contusion model at middle and late stages (14 and 28 days). CONCLUSION: Our results suggest that miRNA-overexpressing MSCs-derived EVs (200 μg of total protein of EVs) may be the best choice for the effective treatment of SCI, and miRNA-overexpressing MSCs-derived EVs may likewise be the best choice for treating contusions. However, there are some risks of bias in our included studies, and the mechanisms underlying the efficacy of EVs remain unclear. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=282051, identifier: CRD42021282051. |
format | Online Article Text |
id | pubmed-9581233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95812332022-10-20 Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis Yang, Zhelun Rao, Jian Liang, Zeyan Xu, Xiongjie Lin, Fabin Lin, Yike Wang, Chunhua Chen, Chunmei Front Neurosci Neuroscience BACKGROUND: Although some previous studies have indicated that extracellular vesicles (EVs) secreted from miRNA-modified mesenchymal stem cells (MSCs) may be more effective as compared with control EVs in the treatment of rats with spinal cord injuries (SCI), the efficacy of this treatment modality remains controversial. OBJECTIVES: The current study comprehensively evaluated the efficacy of different administered doses of EVs, including miRNA-overexpressing MSCs-derived EVs, among SCI rats. The efficacy of EVs' treatment was evaluated in different SCI models to provide evidence for preclinical trials. METHODS: We extensively searched the following databases to identify relevant studies: PubMed, Embase, Scopus, The Cochrane Library, and Web of Science (from inception to July 20, 2022). Two trained investigators independently screened literature, extracted the data, and evaluated literature quality. RESULTS: Thirteen studies were included in this network meta-analysis. The results demonstrated that miRNA-overexpressing MSCs-derived EVs (100 and 200 μg of total protein of EVs) significantly improved hind limb motor function in rats at early stages of SCI (i.e., at 3 days after injury) as compared with EVs (100 and 200 μg of total protein of EVs, respectively). However, in the middle and late stages (14 and 28 days), there were no statistically significant differences between EVs with 200 μg dosages and miRNA-loaded EVs with 100 μg dosages. In the late stages (28 days), there were no statistically significant differences between EVs with 100 μg dosages and miRNA-loaded EVs with 200 μg dosages. We found that miRNA-overexpressing MSCs-derived EVs significantly improved motor function among early-stage SCI rats in a compression and contusion model (3 days) as compared with MSCs-derived EVs and miRNA-overexpressing MSCs-derived EVs likewise significantly improved motor function among SCI rats in a contusion model at middle and late stages (14 and 28 days). CONCLUSION: Our results suggest that miRNA-overexpressing MSCs-derived EVs (200 μg of total protein of EVs) may be the best choice for the effective treatment of SCI, and miRNA-overexpressing MSCs-derived EVs may likewise be the best choice for treating contusions. However, there are some risks of bias in our included studies, and the mechanisms underlying the efficacy of EVs remain unclear. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=282051, identifier: CRD42021282051. Frontiers Media S.A. 2022-10-05 /pmc/articles/PMC9581233/ /pubmed/36278023 http://dx.doi.org/10.3389/fnins.2022.989295 Text en Copyright © 2022 Yang, Rao, Liang, Xu, Lin, Lin, Wang and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Yang, Zhelun Rao, Jian Liang, Zeyan Xu, Xiongjie Lin, Fabin Lin, Yike Wang, Chunhua Chen, Chunmei Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title | Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title_full | Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title_fullStr | Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title_full_unstemmed | Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title_short | Efficacy of miRNA-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: A systematic review of the literature and network meta-analysis |
title_sort | efficacy of mirna-modified mesenchymal stem cell extracellular vesicles in spinal cord injury: a systematic review of the literature and network meta-analysis |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581233/ https://www.ncbi.nlm.nih.gov/pubmed/36278023 http://dx.doi.org/10.3389/fnins.2022.989295 |
work_keys_str_mv | AT yangzhelun efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT raojian efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT liangzeyan efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT xuxiongjie efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT linfabin efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT linyike efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT wangchunhua efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis AT chenchunmei efficacyofmirnamodifiedmesenchymalstemcellextracellularvesiclesinspinalcordinjuryasystematicreviewoftheliteratureandnetworkmetaanalysis |