Cargando…
Identification of risk genes for Alzheimer’s disease by gene embedding
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer’s disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares th...
Autores principales: | Lagisetty, Yashwanth, Bourquard, Thomas, Al-Ramahi, Ismael, Mangleburg, Carl Grant, Mota, Samantha, Soleimani, Shirin, Shulman, Joshua M., Botas, Juan, Lee, Kwanghyuk, Lichtarge, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581494/ https://www.ncbi.nlm.nih.gov/pubmed/36268052 http://dx.doi.org/10.1016/j.xgen.2022.100162 |
Ejemplares similares
-
Functional variants identify sex-specific genes and pathways in Alzheimer’s Disease
por: Bourquard, Thomas, et al.
Publicado: (2023) -
Harnessing the paradoxical phenotypes of APOE ɛ2 and APOE ɛ4 to identify genetic modifiers in Alzheimer's disease
por: Kim, Young Won, et al.
Publicado: (2020) -
Evolutionary Action–Machine Learning Model Identifies Candidate Genes Associated With Early‐Onset Coronary Artery Disease
por: Shapiro, Dillon, et al.
Publicado: (2023) -
Functional screening of lysosomal storage disorder genes identifies modifiers of alpha-synuclein neurotoxicity
por: Yu, Meigen, et al.
Publicado: (2023) -
EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants
por: Parvandeh, Saeid, et al.
Publicado: (2022)