Cargando…
A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer
BACKGROUND: The association between oxidative stress and lncRNAs within the cancer-related researching field has been a controversial subject. At present, the exact function of oxidative stress as well as lncRNAs exert in breast cancer (BC) are still unclear. Therefore, the present study examined th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581603/ https://www.ncbi.nlm.nih.gov/pubmed/36276269 http://dx.doi.org/10.1155/2022/9766954 |
_version_ | 1784812661108637696 |
---|---|
author | Zhao, Jinlai Ma, Haiyan Feng, Ruigang Li, Dan Liu, Bowen YueYu, Cao, Xuchen Wang, Xin |
author_facet | Zhao, Jinlai Ma, Haiyan Feng, Ruigang Li, Dan Liu, Bowen YueYu, Cao, Xuchen Wang, Xin |
author_sort | Zhao, Jinlai |
collection | PubMed |
description | BACKGROUND: The association between oxidative stress and lncRNAs within the cancer-related researching field has been a controversial subject. At present, the exact function of oxidative stress as well as lncRNAs exert in breast cancer (BC) are still unclear. Therefore, the present study examined the lncRNAs oxidative stress-related in BC. METHODS: Transcriptome data of BC obtained from TCGA (The Cancer Genome Atlas) database were used to generate synthetic matrices. Patients with breast cancer were randomly assigned to training, testing, or combined groups. The prognostic signature of oxidative stress was created using the selection operator Cox regression method, and the difference in prognosis between groups was examined using Kaplan-Meier curves, the accuracy of which was calculated using a receiver-operating characteristic-area through the curve (ROC-AUC) analysis with internal validation. Also, the Gene Set Enrichment Analyses (GSEA) was applied for the analysis of the risk groups. To conclude, the half-maximal inhibitory concentration (IC50) of these groups were investigated by immunoassay assay. RESULTS: A model based on 7 lncRNAs related to oxidative stress was proposed, and the calibration plots and projected prognosis matched well. For prognosis at 5, 3, and 1 year, the area under the ROC curve (AUC) values were 0.777, 0.777, and 0.759. The functions of target genes identified by GSEA appear to be mainly expressed in metabolism, signal transduction, tumorigenesis, and also the progression. The remarkable differences in IC50 and gene expression between risk groups in this study provide a deep insight for further systemic treatment. Higher macrophage scores were acquired in the high-risk group, of which patients showed more response to conventional chemotherapy drugs, such as AKT inhibitor VIII and Lapatinib, as well as immunotherapy strategies including anti-CD80, TNF SF4, CD276, and NRP1. CONCLUSION: The prognosis of breast cancer can be independently predicted by the markers, which sheds light on further research of the specific role of lncRNAs which are oxidative stress-related and clinical treatment of breast cancer. |
format | Online Article Text |
id | pubmed-9581603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95816032022-10-20 A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer Zhao, Jinlai Ma, Haiyan Feng, Ruigang Li, Dan Liu, Bowen YueYu, Cao, Xuchen Wang, Xin J Oncol Research Article BACKGROUND: The association between oxidative stress and lncRNAs within the cancer-related researching field has been a controversial subject. At present, the exact function of oxidative stress as well as lncRNAs exert in breast cancer (BC) are still unclear. Therefore, the present study examined the lncRNAs oxidative stress-related in BC. METHODS: Transcriptome data of BC obtained from TCGA (The Cancer Genome Atlas) database were used to generate synthetic matrices. Patients with breast cancer were randomly assigned to training, testing, or combined groups. The prognostic signature of oxidative stress was created using the selection operator Cox regression method, and the difference in prognosis between groups was examined using Kaplan-Meier curves, the accuracy of which was calculated using a receiver-operating characteristic-area through the curve (ROC-AUC) analysis with internal validation. Also, the Gene Set Enrichment Analyses (GSEA) was applied for the analysis of the risk groups. To conclude, the half-maximal inhibitory concentration (IC50) of these groups were investigated by immunoassay assay. RESULTS: A model based on 7 lncRNAs related to oxidative stress was proposed, and the calibration plots and projected prognosis matched well. For prognosis at 5, 3, and 1 year, the area under the ROC curve (AUC) values were 0.777, 0.777, and 0.759. The functions of target genes identified by GSEA appear to be mainly expressed in metabolism, signal transduction, tumorigenesis, and also the progression. The remarkable differences in IC50 and gene expression between risk groups in this study provide a deep insight for further systemic treatment. Higher macrophage scores were acquired in the high-risk group, of which patients showed more response to conventional chemotherapy drugs, such as AKT inhibitor VIII and Lapatinib, as well as immunotherapy strategies including anti-CD80, TNF SF4, CD276, and NRP1. CONCLUSION: The prognosis of breast cancer can be independently predicted by the markers, which sheds light on further research of the specific role of lncRNAs which are oxidative stress-related and clinical treatment of breast cancer. Hindawi 2022-10-12 /pmc/articles/PMC9581603/ /pubmed/36276269 http://dx.doi.org/10.1155/2022/9766954 Text en Copyright © 2022 Jinlai Zhao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhao, Jinlai Ma, Haiyan Feng, Ruigang Li, Dan Liu, Bowen YueYu, Cao, Xuchen Wang, Xin A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title | A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title_full | A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title_fullStr | A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title_full_unstemmed | A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title_short | A Novel Oxidative Stress-Related lncRNA Signature That Predicts the Prognosis and Tumor Immune Microenvironment of Breast Cancer |
title_sort | novel oxidative stress-related lncrna signature that predicts the prognosis and tumor immune microenvironment of breast cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581603/ https://www.ncbi.nlm.nih.gov/pubmed/36276269 http://dx.doi.org/10.1155/2022/9766954 |
work_keys_str_mv | AT zhaojinlai anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT mahaiyan anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT fengruigang anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT lidan anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT liubowen anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT yueyu anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT caoxuchen anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT wangxin anoveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT zhaojinlai noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT mahaiyan noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT fengruigang noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT lidan noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT liubowen noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT yueyu noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT caoxuchen noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer AT wangxin noveloxidativestressrelatedlncrnasignaturethatpredictstheprognosisandtumorimmunemicroenvironmentofbreastcancer |