Cargando…
Edge-Aware Graph Neural Network for Multi-Hop Path Reasoning over Knowledge Base
Multi-hop path reasoning over knowledge base aims at finding answer entities for an input question by walking along a path of triples from graph structure data, which is a crucial branch in the knowledge base question answering (KBQA) research field. Previous studies rely on deep neural networks to...
Autores principales: | Zhang, Yanan, Jin, Li, Li, Xiaoyu, Wang, Honqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581621/ https://www.ncbi.nlm.nih.gov/pubmed/36275972 http://dx.doi.org/10.1155/2022/4734179 |
Ejemplares similares
-
IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
por: Du, Zhenyu, et al.
Publicado: (2023) -
Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion
por: Lan, Yinyu, et al.
Publicado: (2021) -
Long-distance dependency combined multi-hop graph neural networks for protein–protein interactions prediction
por: Zhong, Wen, et al.
Publicado: (2022) -
Multi-Hops Functional Connectivity Improves Individual Prediction of Fusiform Face Activation via a Graph Neural Network
por: Wu, Dongya, et al.
Publicado: (2021) -
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
por: Altarelli, Fabrizio, et al.
Publicado: (2015)