Cargando…
Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing
With the advancing of location-detection technologies and the increasing popularity of mobile phones and other location-aware devices, trajectory data is continuously growing. While large-scale trajectories provide opportunities for various applications, the locations in trajectories pose a threat t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581755/ https://www.ncbi.nlm.nih.gov/pubmed/36281257 http://dx.doi.org/10.1007/s11390-022-2409-x |
_version_ | 1784812697457524736 |
---|---|
author | Sun, She Ma, Shuai Song, Jing-He Yue, Wen-Hai Lin, Xue-Lian Ma, Tiejun |
author_facet | Sun, She Ma, Shuai Song, Jing-He Yue, Wen-Hai Lin, Xue-Lian Ma, Tiejun |
author_sort | Sun, She |
collection | PubMed |
description | With the advancing of location-detection technologies and the increasing popularity of mobile phones and other location-aware devices, trajectory data is continuously growing. While large-scale trajectories provide opportunities for various applications, the locations in trajectories pose a threat to individual privacy. Recently, there has been an interesting debate on the reidentifiability of individuals in the Science magazine. The main finding of Sánchez et al. is exactly opposite to that of De Montjoye et al., which raises the first question: “what is the true situation of the privacy preservation for trajectories in terms of reidentification?” Furthermore, it is known that anonymization typically causes a decline of data utility, and anonymization mechanisms need to consider the trade-off between privacy and utility. This raises the second question: “what is the true situation of the utility of anonymized trajectories?” To answer these two questions, we conduct a systematic experimental study, using three real-life trajectory datasets, five existing anonymization mechanisms (i.e., identifier anonymization, grid-based anonymization, dummy trajectories, k-anonymity and ε-differential privacy), and two practical applications (i.e., travel time estimation and window range queries). Our findings reveal the true situation of the privacy preservation for trajectories in terms of reidentification and the true situation of the utility of anonymized trajectories, and essentially close the debate between De Montjoye et al. and Sánchez et al. To the best of our knowledge, this study is among the first systematic evaluation and analysis of anonymized trajectories on the individual privacy in terms of unicity and on the utility in terms of practical applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11390-022-2409-x. |
format | Online Article Text |
id | pubmed-9581755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Nature Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-95817552022-10-20 Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing Sun, She Ma, Shuai Song, Jing-He Yue, Wen-Hai Lin, Xue-Lian Ma, Tiejun J Comput Sci Technol Regular Paper With the advancing of location-detection technologies and the increasing popularity of mobile phones and other location-aware devices, trajectory data is continuously growing. While large-scale trajectories provide opportunities for various applications, the locations in trajectories pose a threat to individual privacy. Recently, there has been an interesting debate on the reidentifiability of individuals in the Science magazine. The main finding of Sánchez et al. is exactly opposite to that of De Montjoye et al., which raises the first question: “what is the true situation of the privacy preservation for trajectories in terms of reidentification?” Furthermore, it is known that anonymization typically causes a decline of data utility, and anonymization mechanisms need to consider the trade-off between privacy and utility. This raises the second question: “what is the true situation of the utility of anonymized trajectories?” To answer these two questions, we conduct a systematic experimental study, using three real-life trajectory datasets, five existing anonymization mechanisms (i.e., identifier anonymization, grid-based anonymization, dummy trajectories, k-anonymity and ε-differential privacy), and two practical applications (i.e., travel time estimation and window range queries). Our findings reveal the true situation of the privacy preservation for trajectories in terms of reidentification and the true situation of the utility of anonymized trajectories, and essentially close the debate between De Montjoye et al. and Sánchez et al. To the best of our knowledge, this study is among the first systematic evaluation and analysis of anonymized trajectories on the individual privacy in terms of unicity and on the utility in terms of practical applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11390-022-2409-x. Springer Nature Singapore 2022-09-30 2022 /pmc/articles/PMC9581755/ /pubmed/36281257 http://dx.doi.org/10.1007/s11390-022-2409-x Text en © Institute of Computing Technology, Chinese Academy of Sciences 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Regular Paper Sun, She Ma, Shuai Song, Jing-He Yue, Wen-Hai Lin, Xue-Lian Ma, Tiejun Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title | Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title_full | Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title_fullStr | Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title_full_unstemmed | Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title_short | Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing |
title_sort | experiments and analyses of anonymization mechanisms for trajectory data publishing |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581755/ https://www.ncbi.nlm.nih.gov/pubmed/36281257 http://dx.doi.org/10.1007/s11390-022-2409-x |
work_keys_str_mv | AT sunshe experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing AT mashuai experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing AT songjinghe experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing AT yuewenhai experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing AT linxuelian experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing AT matiejun experimentsandanalysesofanonymizationmechanismsfortrajectorydatapublishing |