Cargando…
Deep learning model for predicting tunnel damages and track serviceability under seismic environment
Jammu and Kashmir in the northwestern part of the Himalayan region is frequently triggered with moderate to large magnitude earthquakes due to an active tectonic regime. In this study, a mathematical formulation-based Seismic Tunnel Damage Prediction (STDP) model is proposed using the deep learning...
Autores principales: | Ansari, Abdullah, Rao, K. S., Jain, A. K., Ansari, Anas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581771/ https://www.ncbi.nlm.nih.gov/pubmed/36281341 http://dx.doi.org/10.1007/s40808-022-01556-7 |
Ejemplares similares
-
Seismic Response and Vulnerability Evaluation of Jammu Region (Jammu and Kashmir)
por: Ansari, Abdullah, et al.
Publicado: (2022) -
Liquefaction hazard assessment in a seismically active region of Himalayas using geotechnical and geophysical investigations: a case study of the Jammu Region
por: Ansari, Abdullah, et al.
Publicado: (2022) -
Seismic Stability of Subsea Tunnels Subjected to Seepage
por: Cheng, Xuansheng, et al.
Publicado: (2014) -
Seismic response of CRTS II ballastless track-bridge system considering the damage of track structure
por: Yan, Bin, et al.
Publicado: (2021) -
TSP 202 (Tunnel Seismic Prediction): Amberg measuring technique
Publicado: (2017)