Cargando…

Polyethylene glycol capped gold nanoparticles ameliorate renal ischemia–reperfusion injury in diabetic mice through AMPK-Nrf2 signaling pathway

The aim of this study is to investigate the protective effect of polyethylene glycol capped gold nanoparticles (PEG-AuNPs) on renal ischemia–reperfusion injury (I/R)–induced acute kidney injury (AKI) in diabetic mice via the activation of adenosine 5′ monophosphate–activated protein kinase—nuclear f...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleh, Hanan, Salama, Mohamed, Hussein, Rehab Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581836/
https://www.ncbi.nlm.nih.gov/pubmed/35688972
http://dx.doi.org/10.1007/s11356-022-21235-5
Descripción
Sumario:The aim of this study is to investigate the protective effect of polyethylene glycol capped gold nanoparticles (PEG-AuNPs) on renal ischemia–reperfusion injury (I/R)–induced acute kidney injury (AKI) in diabetic mice via the activation of adenosine 5′ monophosphate–activated protein kinase—nuclear factor erythroid-2-related factor-2 (AMPK-Nrf2) pathway. Diabetes was induced in male mice (12/group) by streptozotocin (50 mg/kg) for 5 consecutive days. After 4 weeks, the mice have intravenously received doses of PEG-AuNPs (40, 150, and 400 µg/kg body weight) for 3 consecutive days, and then animals were subjected to 30 min ischemia and 48 h reperfusion. Following the treatment with three different doses of PEG-AuNPs, the levels of blood urea nitrogen (BUN) and creatinine were reduced. Obvious reduction in renal tubular atrophy, glomerular damage, mitochondrial damage, and necrotic area were ultra-structurally detected, and renal interstitial inflammation and apoptosis were diminished. Moreover, PEG-AuNPs increased the recovering of damaged renal cells, suppressed significantly levels of malondialdehyde (MDA), downregulated significantly the level of inflammatory cytokines (TNF-α and IL-1β), and upregulated the AMPK-Nrf2 pathway. PEG-AuNPs exhibited a promising alternative therapeutic target for diabetic renal I/R-induced AKI through upregulation of AMPK/PI3K/AKT path which additionally stimulated Nrf2-regulated antioxidant enzymes in a dose-dependent manner. GRAPHICAL ABSTRACT: [Image: see text]