Cargando…
Alignment-invariant signal reality reconstruction in hyperspectral imaging using a deep convolutional neural network architecture
The energy resolution in hyperspectral imaging techniques has always been an important matter in data interpretation. In many cases, spectral information is distorted by elements such as instruments’ broad optical transfer function, and electronic high frequency noises. In the past decades, advances...
Autores principales: | Mousavi M., S. Shayan, Pofelski, Alexandre, Teimoori, Hassan, Botton, Gianluigi A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581942/ https://www.ncbi.nlm.nih.gov/pubmed/36261495 http://dx.doi.org/10.1038/s41598-022-22264-3 |
Ejemplares similares
-
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
por: Halicek, Martin, et al.
Publicado: (2017) -
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
por: Li, Simin, et al.
Publicado: (2019) -
Discrimination of Chrysanthemum Varieties Using Hyperspectral Imaging Combined with a Deep Convolutional Neural Network
por: Wu, Na, et al.
Publicado: (2018) -
Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
por: Courtenay, Lloyd A., et al.
Publicado: (2022) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022)