Cargando…
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review
Transparency in Machine Learning (ML), often also referred to as interpretability or explainability, attempts to reveal the working mechanisms of complex models. From a human-centered design perspective, transparency is not a property of the ML model but an affordance, i.e., a relationship between a...
Autores principales: | Chen, Haomin, Gomez, Catalina, Huang, Chien-Ming, Unberath, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581990/ https://www.ncbi.nlm.nih.gov/pubmed/36261476 http://dx.doi.org/10.1038/s41746-022-00699-2 |
Ejemplares similares
-
Direct Gene Expression Profile Prediction for Uveal Melanoma from Digital Cytopathology Images via Deep Learning and Salient Image Region Identification
por: Liu, T. Y. Alvin, et al.
Publicado: (2022) -
Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation
por: Dreizin, David, et al.
Publicado: (2023) -
Medical Informatics and Explainable AI
por: Aliyev, Taghi
Publicado: (2019) -
Explainable AI as evidence of fair decisions
por: Leben, Derek
Publicado: (2023) -
Putting explainable AI in context: institutional explanations for medical AI
por: Theunissen, Mark, et al.
Publicado: (2022)