Cargando…
Deep learning for religious and continent-based toxic content detection and classification
With time, numerous online communication platforms have emerged that allow people to express themselves, increasing the dissemination of toxic languages, such as racism, sexual harassment, and other negative behaviors that are not accepted in polite society. As a result, toxic language identificatio...
Autores principales: | Abbasi, Ahmed, Javed, Abdul Rehman, Iqbal, Farkhund, Kryvinska, Natalia, Jalil, Zunera |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581992/ https://www.ncbi.nlm.nih.gov/pubmed/36261675 http://dx.doi.org/10.1038/s41598-022-22523-3 |
Ejemplares similares
-
Authorship identification using ensemble learning
por: Abbasi, Ahmed, et al.
Publicado: (2022) -
COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques
por: Jalil, Zunera, et al.
Publicado: (2022) -
Classification of Non-Functional Requirements From IoT Oriented Healthcare Requirement Document
por: Khurshid, Iqra, et al.
Publicado: (2022) -
A comprehensive survey of AI-enabled phishing attacks detection techniques
por: Basit, Abdul, et al.
Publicado: (2020) -
DeepClassRooms: a deep learning based digital twin framework for on-campus class rooms
por: Razzaq, Saad, et al.
Publicado: (2022)