Cargando…
Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant lesions is crucial for reducing mortality. The use of deep learning techniques on dermoscopic images can help in keeping track of the change over time in the appearance of the lesion, which is an important factor for detecti...
Autores principales: | Pennisi, Andrea, Bloisi, Domenico D., Suriani, Vincenzo, Nardi, Daniele, Facchiano, Antonio, Giampetruzzi, Anna Rita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582108/ https://www.ncbi.nlm.nih.gov/pubmed/35505265 http://dx.doi.org/10.1007/s10278-022-00634-7 |
Ejemplares similares
-
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
por: Dayananda, Chaitra, et al.
Publicado: (2021) -
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
Dual-Path Attention Compensation U-Net for Stroke Lesion Segmentation
por: Hui, Haisheng, et al.
Publicado: (2021) -
Anti-Aliasing Attention U-net Model for Skin Lesion Segmentation
por: Le, Phuong Thi, et al.
Publicado: (2023) -
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
por: Wang, Jinke, et al.
Publicado: (2021)