Cargando…
Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats
Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure–induced hypertension (CIH) and...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582121/ https://www.ncbi.nlm.nih.gov/pubmed/36278222 http://dx.doi.org/10.3389/fphar.2022.970812 |
_version_ | 1784812764015886336 |
---|---|
author | Tang, Liang-Liang Yang, Xu Yu, Shu-Qi Qin, Qi Xue, Rong Sun, Yu Xiao, Han Shang, An-Qi Liu, Jia-Qun Han, Song-Qi Liang, Chen Lou, Jie Wang, Qiu-Shi Yu, Chang-Jiang Wu, Ming-Ming Zhang, Zhi-Ren |
author_facet | Tang, Liang-Liang Yang, Xu Yu, Shu-Qi Qin, Qi Xue, Rong Sun, Yu Xiao, Han Shang, An-Qi Liu, Jia-Qun Han, Song-Qi Liang, Chen Lou, Jie Wang, Qiu-Shi Yu, Chang-Jiang Wu, Ming-Ming Zhang, Zhi-Ren |
author_sort | Tang, Liang-Liang |
collection | PubMed |
description | Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure–induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH. |
format | Online Article Text |
id | pubmed-9582121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95821212022-10-21 Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats Tang, Liang-Liang Yang, Xu Yu, Shu-Qi Qin, Qi Xue, Rong Sun, Yu Xiao, Han Shang, An-Qi Liu, Jia-Qun Han, Song-Qi Liang, Chen Lou, Jie Wang, Qiu-Shi Yu, Chang-Jiang Wu, Ming-Ming Zhang, Zhi-Ren Front Pharmacol Pharmacology Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure–induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH. Frontiers Media S.A. 2022-10-06 /pmc/articles/PMC9582121/ /pubmed/36278222 http://dx.doi.org/10.3389/fphar.2022.970812 Text en Copyright © 2022 Tang, Yang, Yu, Qin, Xue, Sun, Xiao, Shang, Liu, Han, Liang, Lou, Wang, Yu, Wu and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Tang, Liang-Liang Yang, Xu Yu, Shu-Qi Qin, Qi Xue, Rong Sun, Yu Xiao, Han Shang, An-Qi Liu, Jia-Qun Han, Song-Qi Liang, Chen Lou, Jie Wang, Qiu-Shi Yu, Chang-Jiang Wu, Ming-Ming Zhang, Zhi-Ren Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title | Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title_full | Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title_fullStr | Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title_full_unstemmed | Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title_short | Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats |
title_sort | aldosterone-stimulated endothelial epithelial sodium channel (ennac) plays a role in cold exposure–induced hypertension in rats |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582121/ https://www.ncbi.nlm.nih.gov/pubmed/36278222 http://dx.doi.org/10.3389/fphar.2022.970812 |
work_keys_str_mv | AT tangliangliang aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT yangxu aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT yushuqi aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT qinqi aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT xuerong aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT sunyu aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT xiaohan aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT shanganqi aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT liujiaqun aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT hansongqi aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT liangchen aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT loujie aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT wangqiushi aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT yuchangjiang aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT wumingming aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats AT zhangzhiren aldosteronestimulatedendothelialepithelialsodiumchannelennacplaysaroleincoldexposureinducedhypertensioninrats |