Cargando…
Using Occlusion-Based Saliency Maps to Explain an Artificial Intelligence Tool in Lung Cancer Screening: Agreement Between Radiologists, Labels, and Visual Prompts
Occlusion-based saliency maps (OBSMs) are one of the approaches for interpreting decision-making process of an artificial intelligence (AI) system. This study explores the agreement among text responses from a cohort of radiologists to describe diagnostically relevant areas on low-dose CT (LDCT) ima...
Autores principales: | Gandomkar, Ziba, Khong, Pek Lan, Punch, Amanda, Lewis, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582174/ https://www.ncbi.nlm.nih.gov/pubmed/35484439 http://dx.doi.org/10.1007/s10278-022-00631-w |
Ejemplares similares
-
Artificial Intelligence in medical imaging practice: looking to the future
por: Lewis, Sarah J, et al.
Publicado: (2019) -
Artificial Intelligence: Is It Armageddon for Breast Radiologists?
por: Chiwome, Lawman, et al.
Publicado: (2020) -
Perception of Artificial Intelligence (AI) among radiologists
por: Pakdemirli, Emre
Publicado: (2019) -
The Potential Dangers of Artificial Intelligence for Radiology and Radiologists
por: Chu, Linda C., et al.
Publicado: (2020) -
The augmented radiologist: artificial intelligence in the practice of radiology
por: Sorantin, Erich, et al.
Publicado: (2021)