Cargando…
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
We aim to synthesize brain time‐of‐flight (TOF) PET images/sinograms from their corresponding non‐TOF information in the image space (IS) and sinogram space (SS) to increase the signal‐to‐noise ratio (SNR) and contrast of abnormalities, and decrease the bias in tracer uptake quantification. One hund...
Autores principales: | Sanaat, Amirhossein, Akhavanalaf, Azadeh, Shiri, Isaac, Salimi, Yazdan, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582376/ https://www.ncbi.nlm.nih.gov/pubmed/36087092 http://dx.doi.org/10.1002/hbm.26068 |
Ejemplares similares
-
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning
por: Shiri, Isaac, et al.
Publicado: (2022) -
Deep learning–based time-of-flight (ToF) image enhancement of non-ToF PET scans
por: Mehranian, Abolfazl, et al.
Publicado: (2022) -
Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement: Toward Routine Clinical Image Quality Assurance
por: Shiri, Isaac, et al.
Publicado: (2023)