Cargando…

Mobile electroencephalography captures differences of walking over even and uneven terrain but not of single and dual-task gait

Walking on natural terrain while performing a dual-task, such as typing on a smartphone is a common behavior. Since dual-tasking and terrain change gait characteristics, it is of interest to understand how altered gait is reflected by changes in gait-associated neural signatures. A study was perform...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacobsen, Nadine Svenja Josée, Blum, Sarah, Scanlon, Joanna Elizabeth Mary, Witt, Karsten, Debener, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582531/
https://www.ncbi.nlm.nih.gov/pubmed/36275441
http://dx.doi.org/10.3389/fspor.2022.945341
Descripción
Sumario:Walking on natural terrain while performing a dual-task, such as typing on a smartphone is a common behavior. Since dual-tasking and terrain change gait characteristics, it is of interest to understand how altered gait is reflected by changes in gait-associated neural signatures. A study was performed with 64-channel electroencephalography (EEG) of healthy volunteers, which was recorded while they walked over uneven and even terrain outdoors with and without performing a concurrent task (self-paced button pressing with both thumbs). Data from n = 19 participants (M = 24 years, 13 females) were analyzed regarding gait-phase related power modulations (GPM) and gait performance (stride time and stride time-variability). GPMs changed significantly with terrain, but not with the task. Descriptively, a greater beta power decrease following right-heel strikes was observed on uneven compared to even terrain. No evidence of an interaction was observed. Beta band power reduction following the initial contact of the right foot was more pronounced on uneven than on even terrain. Stride times were longer on uneven compared to even terrain and during dual- compared to single-task gait, but no significant interaction was observed. Stride time variability increased on uneven terrain compared to even terrain but not during single- compared to dual-tasking. The results reflect that as the terrain difficulty increases, the strides become slower and more irregular, whereas a secondary task slows stride duration only. Mobile EEG captures GPM differences linked to terrain changes, suggesting that the altered gait control demands and associated cortical processes can be identified. This and further studies may help to lay the foundation for protocols assessing the cognitive demand of natural gait on the motor system.