Cargando…
Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches
The complex, unpredictable nature of pathogen occurrence has required substantial efforts to accurately predict infectious diseases (IDs). With rising popularity of Machine Learning (ML) and Deep Learning (DL) techniques combined with their unique ability to uncover connections between large amounts...
Autores principales: | Keshavamurthy, Ravikiran, Dixon, Samuel, Pazdernik, Karl T., Charles, Lauren E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582566/ https://www.ncbi.nlm.nih.gov/pubmed/36277100 http://dx.doi.org/10.1016/j.onehlt.2022.100439 |
Ejemplares similares
-
A Comparison of Infectious Disease Forecasting Methods across Locations, Diseases, and Time
por: Dixon, Samuel, et al.
Publicado: (2022) -
Predicting Kyasanur forest disease in resource-limited settings using event-based surveillance and transfer learning
por: Keshavamurthy, Ravikiran, et al.
Publicado: (2023) -
Establishing a Pre-COVID-19 Hospital Biopreparedness Initiative
por: Popescu, Saskia, et al.
Publicado: (2021) -
Making the case for biopreparedness in frontline hospitals: a Phoenix case study
por: Popescu, Saskia
Publicado: (2021) -
Hospital biopreparedness in the Looming Presence of SARS‐CoV‐2/COVID‐19
por: Popescu, Saskia
Publicado: (2020)