Cargando…
Pericentriolar matrix (PCM) integrity relies on cenexin and polo-like kinase (PLK)1
Polo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome’s pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582643/ https://www.ncbi.nlm.nih.gov/pubmed/35609215 http://dx.doi.org/10.1091/mbc.E22-01-0015 |
Sumario: | Polo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome’s pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation by maintaining PCM cohesion in a PLK1-dependent manner. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin’s C terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to sequester PLK1 that limits PCM substrate phosphorylation events required for PCM cohesion. |
---|