Cargando…
Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications
Carbon nanotubes (CNTs) have been studied for more than twenty-five years due to their distinguishing features such as high tensile strength, high elastic module, high surface area, high thermal and electrical conductivity, making them ideal for a variety of applications. Nanotechnology and nanoscie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582729/ https://www.ncbi.nlm.nih.gov/pubmed/36276756 http://dx.doi.org/10.1016/j.heliyon.2022.e10943 |
Sumario: | Carbon nanotubes (CNTs) have been studied for more than twenty-five years due to their distinguishing features such as high tensile strength, high elastic module, high surface area, high thermal and electrical conductivity, making them ideal for a variety of applications. Nanotechnology and nanoscience researchers are working to develop CNTs with appropriate properties for possible future applications. New methodologies for their synthesis are clearly needed to be developed and refined. In this research, the authors look at the history and the recent developments of carbon nanotubes synthesis methods for CNTs, such as arc discharge, laser ablation, chemical vapour deposition and microwave irradiation. New immerging methods like microwave irradiation for the growth of CNTs and their composite was extensively reviewed. Low temperature and ultrafast growth of CNT through microwave irradiation technique were examined and discussed. In addition, all the techniques used for the CNTs characterization were also briefly discussed. Special attention was dedicated to the application of CNTs. This review has extensively explored future applications in the biomedical sector, industrial water purifications, CNTs composites, energy and storage devices. |
---|