Cargando…

Characterization of chronic lung allograft dysfunction phenotypes using spectral and intrabreath oscillometry

Background: Chronic lung allograft dysfunction (CLAD) is the major cause of death beyond 2 years after lung transplantation and develops in 50% of all patients by 5 years post-transplant. CLAD is diagnosed on the basis of a sustained drop of 20% for at least 3 months in the forced expiratory volume...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Anne, Vasileva, Anastasiia, Hanafi, Nour, Belousova, Natalia, Wu, Joyce, Rajyam, Sarada Sriya, Ryan, Clodagh M., Hantos, Zoltán, Chow, Chung-Wai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582781/
https://www.ncbi.nlm.nih.gov/pubmed/36277208
http://dx.doi.org/10.3389/fphys.2022.980942
Descripción
Sumario:Background: Chronic lung allograft dysfunction (CLAD) is the major cause of death beyond 2 years after lung transplantation and develops in 50% of all patients by 5 years post-transplant. CLAD is diagnosed on the basis of a sustained drop of 20% for at least 3 months in the forced expiratory volume (FEV(1)), compared to the best baseline value achieved post-transplant. CLAD presents as two main phenotypes: bronchiolitis obliterans syndrome (BOS) is more common and has better prognosis than restrictive allograft syndrome (RAS). Respiratory oscillometry is a different modality of lung function testing that is highly sensitive to lung mechanics. The current study investigated whether spectral and intrabreath oscillometry can differentiate between CLAD-free, BOS- and RAS-CLAD at CLAD onset, i.e., at the time of the initial 20% drop in the FEV(1). Methods: A retrospective, cross-sectional analysis of 263 double lung transplant recipients who underwent paired testing with oscillometry and spirometry at the Toronto General Pulmonary Function Laboratory from 2017 to 2022 was conducted. All pulmonary function testing and CLAD diagnostics were performed following international guidelines. Statistical analysis was conducted using multiple comparisons. Findings: The RAS (n = 6) spectral oscillometry pattern differs from CLAD-free (n = 225) by right-ward shift of reactance curve similar to idiopathic pulmonary fibrosis whereas BOS (n = 32) has a pattern similar to obstructive lung disease. Significant differences were found in most spectral and intrabreath parameters between BOS, RAS, and time-matched CLAD-free patients. Post-hoc analysis revealed these differences were primarily driven by BOS instead of RAS. While no differences were found between CLAD-free and RAS patients with regards to spectral oscillometry, the intrabreath metric of reactance at end-inspiration (XeI) was significantly different (p < 0.05). BOS and RAS were differentiated by spectral oscillometry measure R5, and intrabreath resistance at end expiration, ReE (p < 0.05 for both). Conclusion: Both spectral and intrabreath oscillometry can differentiate BOS-CLAD from CLAD-free states while intrabreath oscillometry, specifically XeI, can uniquely distinguish RAS-CLAD from CLAD-free. Spectral and intrabreath oscillometry offer complementary information regarding lung mechanics in CLAD patients to help distinguish the two phenotypes and could prove useful in prognostication.