Cargando…
DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis
The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and charac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582859/ https://www.ncbi.nlm.nih.gov/pubmed/36275542 http://dx.doi.org/10.3389/fpls.2022.983625 |
_version_ | 1784812938747445248 |
---|---|
author | Ilyas, Talha Jin, Hyungjun Siddique, Muhammad Irfan Lee, Sang Jun Kim, Hyongsuk Chua, Leon |
author_facet | Ilyas, Talha Jin, Hyungjun Siddique, Muhammad Irfan Lee, Sang Jun Kim, Hyongsuk Chua, Leon |
author_sort | Ilyas, Talha |
collection | PubMed |
description | The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder–decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops. |
format | Online Article Text |
id | pubmed-9582859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95828592022-10-21 DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis Ilyas, Talha Jin, Hyungjun Siddique, Muhammad Irfan Lee, Sang Jun Kim, Hyongsuk Chua, Leon Front Plant Sci Plant Science The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder–decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops. Frontiers Media S.A. 2022-10-06 /pmc/articles/PMC9582859/ /pubmed/36275542 http://dx.doi.org/10.3389/fpls.2022.983625 Text en Copyright © 2022 Ilyas, Jin, Siddique, Lee, Kim and Chua https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Ilyas, Talha Jin, Hyungjun Siddique, Muhammad Irfan Lee, Sang Jun Kim, Hyongsuk Chua, Leon DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title | DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title_full | DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title_fullStr | DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title_full_unstemmed | DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title_short | DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
title_sort | diana: a deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582859/ https://www.ncbi.nlm.nih.gov/pubmed/36275542 http://dx.doi.org/10.3389/fpls.2022.983625 |
work_keys_str_mv | AT ilyastalha dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis AT jinhyungjun dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis AT siddiquemuhammadirfan dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis AT leesangjun dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis AT kimhyongsuk dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis AT chualeon dianaadeeplearningbasedpaprikaplantdiseaseandpestphenotypingsystemwithdiseaseseverityanalysis |