Cargando…
DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis
The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and charac...
Autores principales: | Ilyas, Talha, Jin, Hyungjun, Siddique, Muhammad Irfan, Lee, Sang Jun, Kim, Hyongsuk, Chua, Leon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582859/ https://www.ncbi.nlm.nih.gov/pubmed/36275542 http://dx.doi.org/10.3389/fpls.2022.983625 |
Ejemplares similares
-
DAM: Hierarchical Adaptive Feature Selection Using Convolution Encoder Decoder Network for Strawberry Segmentation
por: Ilyas, Talha, et al.
Publicado: (2021) -
DNA Metabarcoding for Quality Control of Basil, Oregano, and Paprika
por: Raclariu-Manolică, Ancuţa Cristina, et al.
Publicado: (2021) -
Overcoming field variability: unsupervised domain adaptation for enhanced crop-weed recognition in diverse farmlands
por: Ilyas, Talha, et al.
Publicado: (2023) -
The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools
por: Galvin-King, Pamela, et al.
Publicado: (2020) -
A New Deep Learning-based Dynamic Paradigm Towards Open-World Plant Disease Detection
por: Dong, Jiuqing, et al.
Publicado: (2023)