Cargando…
Development and validation of a machine learning model to predict venous thromboembolism among hospitalized cancer patients
OBJECTIVE: Hospitalized cancer patients are at high risk of venous thromboembolism (VTE). However, no predictive model has been specifically developed for this population. Machine learning (ML) is advantageous for model development. This study was aimed at developing predictive models using three di...
Autores principales: | Meng, Lingqi, Wei, Tao, Fan, Rongrong, Su, Haoze, Liu, Jiahui, Wang, Lijie, Huang, Xinjuan, Qi, Yi, Li, Xuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583033/ https://www.ncbi.nlm.nih.gov/pubmed/36276886 http://dx.doi.org/10.1016/j.apjon.2022.100128 |
Ejemplares similares
-
Validation of a Machine Learning Approach for Venous Thromboembolism Risk Prediction in Oncology
por: Ferroni, Patrizia, et al.
Publicado: (2017) -
Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism
por: Mantha, Simon, et al.
Publicado: (2023) -
Development and Validation of a Risk Prediction Model for Venous Thromboembolism in Lung Cancer Patients Using Machine Learning
por: Lei, Haike, et al.
Publicado: (2022) -
Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients
por: Liu, Hua, et al.
Publicado: (2021) -
Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study
por: Sheng, Wenbo, et al.
Publicado: (2023)