Cargando…
SELFIES and the future of molecular string representations
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs...
Autores principales: | Krenn, Mario, Ai, Qianxiang, Barthel, Senja, Carson, Nessa, Frei, Angelo, Frey, Nathan C., Friederich, Pascal, Gaudin, Théophile, Gayle, Alberto Alexander, Jablonka, Kevin Maik, Lameiro, Rafael F., Lemm, Dominik, Lo, Alston, Moosavi, Seyed Mohamad, Nápoles-Duarte, José Manuel, Nigam, AkshatKumar, Pollice, Robert, Rajan, Kohulan, Schatzschneider, Ulrich, Schwaller, Philippe, Skreta, Marta, Smit, Berend, Strieth-Kalthoff, Felix, Sun, Chong, Tom, Gary, Falk von Rudorff, Guido, Wang, Andrew, White, Andrew D., Young, Adamo, Yu, Rose, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583042/ https://www.ncbi.nlm.nih.gov/pubmed/36277819 http://dx.doi.org/10.1016/j.patter.2022.100588 |
Ejemplares similares
-
Recent advances in the self-referencing embedded strings (SELFIES) library
por: Lo, Alston, et al.
Publicado: (2023) -
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
por: Nigam, AkshatKumar, et al.
Publicado: (2021) -
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
por: Nigam, AkshatKumar, et al.
Publicado: (2022) -
On scientific understanding with artificial intelligence
por: Krenn, Mario, et al.
Publicado: (2022) -
Data-Driven Strategies for Accelerated Materials Design
por: Pollice, Robert, et al.
Publicado: (2021)