Cargando…
Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patie...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583049/ https://www.ncbi.nlm.nih.gov/pubmed/36264358 http://dx.doi.org/10.1186/s13613-022-01070-0 |
_version_ | 1784812982009593856 |
---|---|
author | Dam, Tariq A. Roggeveen, Luca F. van Diggelen, Fuda Fleuren, Lucas M. Jagesar, Ameet R. Otten, Martijn de Vries, Heder J. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco A. A. Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Machado, Tomas Herter, Willem E. de Grooth, Harm-Jan Thoral, Patrick J. Girbes, Armand R. J. Hoogendoorn, Mark Elbers, Paul W. G. |
author_facet | Dam, Tariq A. Roggeveen, Luca F. van Diggelen, Fuda Fleuren, Lucas M. Jagesar, Ameet R. Otten, Martijn de Vries, Heder J. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco A. A. Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Machado, Tomas Herter, Willem E. de Grooth, Harm-Jan Thoral, Patrick J. Girbes, Armand R. J. Hoogendoorn, Mark Elbers, Paul W. G. |
author_sort | Dam, Tariq A. |
collection | PubMed |
description | BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO(2)/FiO(2) ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO(2)/FiO(2) ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO(2)/FiO(2) ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-022-01070-0. |
format | Online Article Text |
id | pubmed-9583049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-95830492022-10-20 Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning Dam, Tariq A. Roggeveen, Luca F. van Diggelen, Fuda Fleuren, Lucas M. Jagesar, Ameet R. Otten, Martijn de Vries, Heder J. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco A. A. Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Machado, Tomas Herter, Willem E. de Grooth, Harm-Jan Thoral, Patrick J. Girbes, Armand R. J. Hoogendoorn, Mark Elbers, Paul W. G. Ann Intensive Care Research BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO(2)/FiO(2) ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO(2)/FiO(2) ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO(2)/FiO(2) ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-022-01070-0. Springer International Publishing 2022-10-20 /pmc/articles/PMC9583049/ /pubmed/36264358 http://dx.doi.org/10.1186/s13613-022-01070-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Dam, Tariq A. Roggeveen, Luca F. van Diggelen, Fuda Fleuren, Lucas M. Jagesar, Ameet R. Otten, Martijn de Vries, Heder J. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco A. A. Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Machado, Tomas Herter, Willem E. de Grooth, Harm-Jan Thoral, Patrick J. Girbes, Armand R. J. Hoogendoorn, Mark Elbers, Paul W. G. Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title | Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title_full | Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title_fullStr | Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title_full_unstemmed | Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title_short | Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning |
title_sort | predicting responders to prone positioning in mechanically ventilated patients with covid-19 using machine learning |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583049/ https://www.ncbi.nlm.nih.gov/pubmed/36264358 http://dx.doi.org/10.1186/s13613-022-01070-0 |
work_keys_str_mv | AT damtariqa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT roggeveenlucaf predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT vandiggelenfuda predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT fleurenlucasm predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT jagesarameetr predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT ottenmartijn predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT devrieshederj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT gommersdiederik predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT cremerolafl predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT bosmanrobj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT rigtersander predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT wilsevertjan predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT frenzeltim predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT dongelmansdavea predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT dejongremko predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT petersmarcoaa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT kampsmarlijnja predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT ramnaraindharmanand predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT nowitzkyralph predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT nooteboomfleurgca predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT deruijterwouter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT urlingsstroplouisec predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT smitellengm predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT mehagnoulschipperdjannet predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT dormanstom predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT dejagercornelispc predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT hendriksstefaanha predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT achterbergsefanja predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT oostdijkevelien predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT reidingaaukec predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT festenspanjerbarbara predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT brunnekreefgertb predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT cornetalexanderd predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT vandentempelwalter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT boelensaged predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT koetsierpeter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT lensjudith predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT faberharaldj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT karakusa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT entjesrobert predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT dejongpaul predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT rettigthijscd predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT arboussesmu predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT vonksebastiaanjj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT machadotomas predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT herterwilleme predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT degroothharmjan predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT thoralpatrickj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT girbesarmandrj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT hoogendoornmark predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT elberspaulwg predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning AT predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning |