Cargando…

Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning

BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patie...

Descripción completa

Detalles Bibliográficos
Autores principales: Dam, Tariq A., Roggeveen, Luca F., van Diggelen, Fuda, Fleuren, Lucas M., Jagesar, Ameet R., Otten, Martijn, de Vries, Heder J., Gommers, Diederik, Cremer, Olaf L., Bosman, Rob J., Rigter, Sander, Wils, Evert-Jan, Frenzel, Tim, Dongelmans, Dave A., de Jong, Remko, Peters, Marco A. A., Kamps, Marlijn J. A., Ramnarain, Dharmanand, Nowitzky, Ralph, Nooteboom, Fleur G. C. A., de Ruijter, Wouter, Urlings-Strop, Louise C., Smit, Ellen G. M., Mehagnoul-Schipper, D. Jannet, Dormans, Tom, de Jager, Cornelis P. C., Hendriks, Stefaan H. A., Achterberg, Sefanja, Oostdijk, Evelien, Reidinga, Auke C., Festen-Spanjer, Barbara, Brunnekreef, Gert B., Cornet, Alexander D., van den Tempel, Walter, Boelens, Age D., Koetsier, Peter, Lens, Judith, Faber, Harald J., Karakus, A., Entjes, Robert, de Jong, Paul, Rettig, Thijs C. D., Arbous, Sesmu, Vonk, Sebastiaan J. J., Machado, Tomas, Herter, Willem E., de Grooth, Harm-Jan, Thoral, Patrick J., Girbes, Armand R. J., Hoogendoorn, Mark, Elbers, Paul W. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583049/
https://www.ncbi.nlm.nih.gov/pubmed/36264358
http://dx.doi.org/10.1186/s13613-022-01070-0
_version_ 1784812982009593856
author Dam, Tariq A.
Roggeveen, Luca F.
van Diggelen, Fuda
Fleuren, Lucas M.
Jagesar, Ameet R.
Otten, Martijn
de Vries, Heder J.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco A. A.
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Machado, Tomas
Herter, Willem E.
de Grooth, Harm-Jan
Thoral, Patrick J.
Girbes, Armand R. J.
Hoogendoorn, Mark
Elbers, Paul W. G.
author_facet Dam, Tariq A.
Roggeveen, Luca F.
van Diggelen, Fuda
Fleuren, Lucas M.
Jagesar, Ameet R.
Otten, Martijn
de Vries, Heder J.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco A. A.
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Machado, Tomas
Herter, Willem E.
de Grooth, Harm-Jan
Thoral, Patrick J.
Girbes, Armand R. J.
Hoogendoorn, Mark
Elbers, Paul W. G.
author_sort Dam, Tariq A.
collection PubMed
description BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO(2)/FiO(2) ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO(2)/FiO(2) ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO(2)/FiO(2) ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-022-01070-0.
format Online
Article
Text
id pubmed-9583049
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-95830492022-10-20 Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning Dam, Tariq A. Roggeveen, Luca F. van Diggelen, Fuda Fleuren, Lucas M. Jagesar, Ameet R. Otten, Martijn de Vries, Heder J. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco A. A. Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Machado, Tomas Herter, Willem E. de Grooth, Harm-Jan Thoral, Patrick J. Girbes, Armand R. J. Hoogendoorn, Mark Elbers, Paul W. G. Ann Intensive Care Research BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO(2)/FiO(2) ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO(2)/FiO(2) ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO(2)/FiO(2) ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-022-01070-0. Springer International Publishing 2022-10-20 /pmc/articles/PMC9583049/ /pubmed/36264358 http://dx.doi.org/10.1186/s13613-022-01070-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
Dam, Tariq A.
Roggeveen, Luca F.
van Diggelen, Fuda
Fleuren, Lucas M.
Jagesar, Ameet R.
Otten, Martijn
de Vries, Heder J.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco A. A.
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Machado, Tomas
Herter, Willem E.
de Grooth, Harm-Jan
Thoral, Patrick J.
Girbes, Armand R. J.
Hoogendoorn, Mark
Elbers, Paul W. G.
Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title_full Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title_fullStr Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title_full_unstemmed Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title_short Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
title_sort predicting responders to prone positioning in mechanically ventilated patients with covid-19 using machine learning
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583049/
https://www.ncbi.nlm.nih.gov/pubmed/36264358
http://dx.doi.org/10.1186/s13613-022-01070-0
work_keys_str_mv AT damtariqa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT roggeveenlucaf predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT vandiggelenfuda predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT fleurenlucasm predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT jagesarameetr predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT ottenmartijn predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT devrieshederj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT gommersdiederik predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT cremerolafl predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT bosmanrobj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT rigtersander predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT wilsevertjan predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT frenzeltim predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT dongelmansdavea predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT dejongremko predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT petersmarcoaa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT kampsmarlijnja predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT ramnaraindharmanand predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT nowitzkyralph predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT nooteboomfleurgca predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT deruijterwouter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT urlingsstroplouisec predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT smitellengm predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT mehagnoulschipperdjannet predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT dormanstom predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT dejagercornelispc predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT hendriksstefaanha predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT achterbergsefanja predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT oostdijkevelien predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT reidingaaukec predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT festenspanjerbarbara predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT brunnekreefgertb predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT cornetalexanderd predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT vandentempelwalter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT boelensaged predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT koetsierpeter predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT lensjudith predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT faberharaldj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT karakusa predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT entjesrobert predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT dejongpaul predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT rettigthijscd predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT arboussesmu predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT vonksebastiaanjj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT machadotomas predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT herterwilleme predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT degroothharmjan predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT thoralpatrickj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT girbesarmandrj predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT hoogendoornmark predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT elberspaulwg predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning
AT predictingresponderstopronepositioninginmechanicallyventilatedpatientswithcovid19usingmachinelearning