Cargando…
Field-scale rice yield estimation based on UAV-based MiniSAR data with Ku band and modified water-cloud model of panicle layer at panicle stage
Scientific and accurate estimation of rice yield is of great significance to food security protection and agricultural economic development. Due to the weak penetration of high frequency microwave band, most of the backscattering comes from the rice canopy, and the backscattering coefficient is high...
Autores principales: | Wang, Zhiyong, Wang, Shuli, Wang, Hongxiang, Liu, Long, Li, Zhenjin, Zhu, Yuandong, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583159/ https://www.ncbi.nlm.nih.gov/pubmed/36275598 http://dx.doi.org/10.3389/fpls.2022.1001779 |
Ejemplares similares
-
Panicle-Cloud: An Open and AI-Powered Cloud Computing Platform for Quantifying Rice Panicles from Drone-Collected Imagery to Enable the Classification of Yield Production in Rice
por: Teng, Zixuan, et al.
Publicado: (2023) -
Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud
por: Gong, Liang, et al.
Publicado: (2021) -
Unsupervised Bayesian learning for rice panicle segmentation with UAV images
por: Hayat, Md Abul, et al.
Publicado: (2020) -
Panicle Apical Abortion 3 Controls Panicle Development and Seed Size in Rice
por: Yang, Fayu, et al.
Publicado: (2021) -
Analyzing Nitrogen Effects on Rice Panicle Development by Panicle Detection and Time-Series Tracking
por: Zhou, Qinyang, et al.
Publicado: (2023)