Cargando…
Retinopathy of prematurity screening: A narrative review of current programs, teleophthalmology, and diagnostic support systems
PURPOSE: Neonatal care in middle-income countries has improved over the last decade, leading to a “third epidemic” of retinopathy of prematurity (ROP). Without concomitant improvements in ROP screening infrastructure, reduction of ROP-associated visual loss remains a challenge worldwide. The emergen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583350/ https://www.ncbi.nlm.nih.gov/pubmed/36276257 http://dx.doi.org/10.4103/sjopt.sjopt_220_21 |
Sumario: | PURPOSE: Neonatal care in middle-income countries has improved over the last decade, leading to a “third epidemic” of retinopathy of prematurity (ROP). Without concomitant improvements in ROP screening infrastructure, reduction of ROP-associated visual loss remains a challenge worldwide. The emergence of teleophthalmology screening programs and artificial intelligence (AI) technologies represents promising methods to address this growing unmet demand in ROP screening. An improved understanding of current ROP screening programs may inform the adoption of these novel technologies in ROP care. METHODS: A critical narrative review of the literature was carried out. Publications that were representative of established or emerging ROP screening programs in high-, middle-, and low-income countries were selected for review. Screening programs were reviewed for inclusion criteria, screening frequency and duration, modality, and published sensitivity and specificity. RESULTS: Screening inclusion criteria, including age and birth weight cutoffs, showed significant heterogeneity globally. Countries of similar income tend to have similar criteria. Three primary screening modalities including binocular indirect ophthalmoscopy (BIO), wide-field digital retinal imaging (WFDRI), and teleophthalmology were identified and reviewed. BIO has documented limitations in reduced interoperator agreement, scalability, and geographical access barriers, which are mitigated in part by WFDRI. Teleophthalmology screening may address limitations in ROP screening workforce distribution and training. Opportunities for AI technologies were identified in the context of these limitations, including interoperator reliability and possibilities for point-of-care diagnosis. CONCLUSION: Limitations in the current ROP screening include scalability, geographical access, and high screening burden with low treatment yield. These may be addressable through increased adoption of teleophthalmology and AI technologies. As the global incidence of ROP continues to increase, implementation of these novel modalities requires greater consideration. |
---|