Cargando…

A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome

BACKGROUND: Mouse is probably the most important model organism to study mammal biology and human diseases. A better understanding of the mouse genome will help understand the human genome, biology and diseases. However, despite the recent progress, the characterization of the regulatory sequences i...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Pengyu, Wilson, David, Su, Zhengchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583556/
https://www.ncbi.nlm.nih.gov/pubmed/36261804
http://dx.doi.org/10.1186/s12864-022-08933-7
Descripción
Sumario:BACKGROUND: Mouse is probably the most important model organism to study mammal biology and human diseases. A better understanding of the mouse genome will help understand the human genome, biology and diseases. However, despite the recent progress, the characterization of the regulatory sequences in the mouse genome is still far from complete, limiting its use to understand the regulatory sequences in the human genome. RESULTS: Here, by integrating binding peaks in ~ 9,000 transcription factor (TF) ChIP-seq datasets that cover 79.9% of the mouse mappable genome using an efficient pipeline, we were able to partition these binding peak-covered genome regions into a cis-regulatory module (CRM) candidate (CRMC) set and a non-CRMC set. The CRMCs contain 912,197 putative CRMs and 38,554,729 TF binding sites (TFBSs) islands, covering 55.5% and 24.4% of the mappable genome, respectively. The CRMCs tend to be under strong evolutionary constraints, indicating that they are likely cis-regulatory; while the non-CRMCs are largely selectively neutral, indicating that they are unlikely cis-regulatory. Based on evolutionary profiles of the genome positions, we further estimated that 63.8% and 27.4% of the mouse genome might code for CRMs and TFBSs, respectively. CONCLUSIONS: Validation using experimental data suggests that at least most of the CRMCs are authentic. Thus, this unprecedentedly comprehensive map of CRMs and TFBSs can be a good resource to guide experimental studies of regulatory genomes in mice and humans. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08933-7.