Cargando…

First genetic report of Ixodes kashmiricus and associated Rickettsia sp.

BACKGROUND: Hard ticks (Ixodidae) are hematophagous ectoparasites that transmit various pathogens to a variety of hosts including humans. Transhumant herds have been involved in the spread of ticks and associated Rickettsia spp., and studies on this neglected topic have been unexplored in many regio...

Descripción completa

Detalles Bibliográficos
Autores principales: Numan, Muhammad, Islam, Nabeela, Adnan, Muhammad, Zaman Safi, Sher, Chitimia-Dobler, Lidia, Labruna, Marcelo B., Ali, Abid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583563/
https://www.ncbi.nlm.nih.gov/pubmed/36261834
http://dx.doi.org/10.1186/s13071-022-05509-y
Descripción
Sumario:BACKGROUND: Hard ticks (Ixodidae) are hematophagous ectoparasites that transmit various pathogens to a variety of hosts including humans. Transhumant herds have been involved in the spread of ticks and associated Rickettsia spp., and studies on this neglected topic have been unexplored in many regions including Pakistan. This study aimed to investigate ticks infesting transhumant herds of sheep (Ovis aries) and goats (Capra hircus) in district Shangla, Khyber Pakhtunkhwa, Pakistan. METHODS: Of the 144 examined animals, 112 hosts (68 sheep and 44 goats) of transhumant herds were infested by 419 ticks of different life stages including nymphs (105; 25%), males (58; 14%) and females (256; 61%). For molecular analyses, DNA was extracted from 64 collected ticks and subjected to PCR for the amplification of tick 16S rDNA and ITS2 partial sequences and for the amplification of rickettsial gltA and ompA gene sequences. RESULTS: All tick specimens were identified as Ixodes kashmiricus based on morphological features. The obtained 16S rDNA and ITS2 sequences showed 95.7% and 95.3% identity, respectively, with Ixodes kazakstani reported from Kyrgyzstan. In the phylogenetic tree, the sequences clustered with members of the Ixodes ricinus species complex, including I. kazakstani and Ixodes apronophorus. Additionally, rickettsial gltA and ompA partial sequences were 99.7% identical to Rickettsia sp. endosymbiont of Ixodes spp. from Panama and Costa Rica and 99.2% with Rickettsia endosymbiont from the USA. Phylogenetically, the rickettsial gltA and ompA partial sequences from I. kashmiricus clustered with various haplotypes of Rickettsia endosymbiont, which were sister cladded to Rickettsia monacensis. CONCLUSIONS: This is the first genetic report of I. kashmiricus and associated Rickettsia sp. Large-scale tick surveillance studies across the country are needed to investigate Ixodes ticks and associated pathogens. GRAPHICAL ABSTRACT: [Image: see text]