Cargando…
Multiscale Methane Measurements at Oil and Gas Facilities Reveal Necessary Frameworks for Improved Emissions Accounting
[Image: see text] Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action opportunity. Recent legislation in the United States requires updating current methane reporting programs for oil and gas facilities with empirical data. While technological ad...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583612/ https://www.ncbi.nlm.nih.gov/pubmed/36201663 http://dx.doi.org/10.1021/acs.est.2c06211 |
_version_ | 1784813109686304768 |
---|---|
author | Wang, Jiayang Lyra Daniels, William S. Hammerling, Dorit M. Harrison, Matthew Burmaster, Kaylyn George, Fiji C. Ravikumar, Arvind P. |
author_facet | Wang, Jiayang Lyra Daniels, William S. Hammerling, Dorit M. Harrison, Matthew Burmaster, Kaylyn George, Fiji C. Ravikumar, Arvind P. |
author_sort | Wang, Jiayang Lyra |
collection | PubMed |
description | [Image: see text] Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action opportunity. Recent legislation in the United States requires updating current methane reporting programs for oil and gas facilities with empirical data. While technological advances have led to improvements in methane emissions measurements and monitoring, the overall effectiveness of mitigation strategies rests on quantifying spatially and temporally varying methane emissions more accurately than the current approaches. In this work, we demonstrate a quantification, monitoring, reporting, and verification framework that pairs snapshot measurements with continuous emissions monitoring systems (CEMS) to reconcile measurements with inventory estimates and account for intermittent emission events. We find that site-level emissions exhibit significant intraday and daily emission variations. Snapshot measurements of methane can span over 3 orders of magnitude and may have limited application in developing annualized inventory estimates at the site level. Consequently, while official inventories underestimate methane emissions on average, emissions at individual facilities can be higher or lower than inventory estimates. Using CEMS, we characterize distributions of frequency and duration of intermittent emission events. Technologies that allow high sampling frequency such as CEMS, paired with a mechanistic understanding of facility-level events, are key to an accurate accounting of short-duration, episodic, and high-volume events that are often missed in snapshot surveys and to scale snapshot measurements to annualized emissions estimates. |
format | Online Article Text |
id | pubmed-9583612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95836122022-10-21 Multiscale Methane Measurements at Oil and Gas Facilities Reveal Necessary Frameworks for Improved Emissions Accounting Wang, Jiayang Lyra Daniels, William S. Hammerling, Dorit M. Harrison, Matthew Burmaster, Kaylyn George, Fiji C. Ravikumar, Arvind P. Environ Sci Technol [Image: see text] Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action opportunity. Recent legislation in the United States requires updating current methane reporting programs for oil and gas facilities with empirical data. While technological advances have led to improvements in methane emissions measurements and monitoring, the overall effectiveness of mitigation strategies rests on quantifying spatially and temporally varying methane emissions more accurately than the current approaches. In this work, we demonstrate a quantification, monitoring, reporting, and verification framework that pairs snapshot measurements with continuous emissions monitoring systems (CEMS) to reconcile measurements with inventory estimates and account for intermittent emission events. We find that site-level emissions exhibit significant intraday and daily emission variations. Snapshot measurements of methane can span over 3 orders of magnitude and may have limited application in developing annualized inventory estimates at the site level. Consequently, while official inventories underestimate methane emissions on average, emissions at individual facilities can be higher or lower than inventory estimates. Using CEMS, we characterize distributions of frequency and duration of intermittent emission events. Technologies that allow high sampling frequency such as CEMS, paired with a mechanistic understanding of facility-level events, are key to an accurate accounting of short-duration, episodic, and high-volume events that are often missed in snapshot surveys and to scale snapshot measurements to annualized emissions estimates. American Chemical Society 2022-10-06 2022-10-18 /pmc/articles/PMC9583612/ /pubmed/36201663 http://dx.doi.org/10.1021/acs.est.2c06211 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Wang, Jiayang Lyra Daniels, William S. Hammerling, Dorit M. Harrison, Matthew Burmaster, Kaylyn George, Fiji C. Ravikumar, Arvind P. Multiscale Methane Measurements at Oil and Gas Facilities Reveal Necessary Frameworks for Improved Emissions Accounting |
title | Multiscale Methane
Measurements at Oil and Gas Facilities
Reveal Necessary Frameworks for Improved Emissions Accounting |
title_full | Multiscale Methane
Measurements at Oil and Gas Facilities
Reveal Necessary Frameworks for Improved Emissions Accounting |
title_fullStr | Multiscale Methane
Measurements at Oil and Gas Facilities
Reveal Necessary Frameworks for Improved Emissions Accounting |
title_full_unstemmed | Multiscale Methane
Measurements at Oil and Gas Facilities
Reveal Necessary Frameworks for Improved Emissions Accounting |
title_short | Multiscale Methane
Measurements at Oil and Gas Facilities
Reveal Necessary Frameworks for Improved Emissions Accounting |
title_sort | multiscale methane
measurements at oil and gas facilities
reveal necessary frameworks for improved emissions accounting |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583612/ https://www.ncbi.nlm.nih.gov/pubmed/36201663 http://dx.doi.org/10.1021/acs.est.2c06211 |
work_keys_str_mv | AT wangjiayanglyra multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT danielswilliams multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT hammerlingdoritm multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT harrisonmatthew multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT burmasterkaylyn multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT georgefijic multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting AT ravikumararvindp multiscalemethanemeasurementsatoilandgasfacilitiesrevealnecessaryframeworksforimprovedemissionsaccounting |