Cargando…
Deep learning modeling of public’s sentiments towards temporal evolution of COVID-19 transmission
Public sentiments towards global pandemics are important for public health assessment and disease control. This study develops a modularized deep learning framework to quantify public sentiments towards COVID-19, followed by leveraging the predicted sentiments to model and forecast the daily growth...
Autores principales: | Wang, Ying, Chew, Alvin Wei Ze, Zhang, Limao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583649/ https://www.ncbi.nlm.nih.gov/pubmed/36281433 http://dx.doi.org/10.1016/j.asoc.2022.109728 |
Ejemplares similares
-
Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
por: Chew, Alvin Wei Ze, et al.
Publicado: (2022) -
Correlating dynamic climate conditions and socioeconomic-governmental factors to spatiotemporal spread of COVID-19 via semantic segmentation deep learning analysis
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Temporal and spatial evolution of online public sentiment on emergencies
por: Li, Shiyue, et al.
Publicado: (2020) -
Deep Learning Model for COVID-19 Sentiment Analysis on Twitter
por: Contreras Hernández, Salvador, et al.
Publicado: (2023)