Cargando…
Highly-automated, high-throughput replication of yeast-based logic circuit design assessments
We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583850/ https://www.ncbi.nlm.nih.gov/pubmed/36285185 http://dx.doi.org/10.1093/synbio/ysac018 |
Sumario: | We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency’s Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. Graphical Abstract [Image: see text] |
---|