Cargando…

Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley

Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Miao, Ye, Fan, Liu, Fulai, Brestic, Marian, Li, Xiangnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583915/
https://www.ncbi.nlm.nih.gov/pubmed/36275608
http://dx.doi.org/10.3389/fpls.2022.998861
Descripción
Sumario:Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.