Cargando…

Viral G Protein–Coupled Receptors Encoded by β- and γ-Herpesviruses

Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein–coup...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenkilde, Mette M., Tsutsumi, Naotaka, Knerr, Julius M., Kildedal, Dagmar F., Garcia, K. Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584139/
https://www.ncbi.nlm.nih.gov/pubmed/35671566
http://dx.doi.org/10.1146/annurev-virology-100220-113942
Descripción
Sumario:Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein–coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi’s sarcoma-associated herpesvirus with one: open reading frame 74, ORF74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections.